Precision γ-ray branching-ratio measurements for long-lived fission products of importance to stockpile stewardship

K. Kolos,¹ A.M. Hennessy,² J.A. Clark,³ J.C. Hardy,⁴ V.E. Iacob,⁴ G.E. Miller,² E. Norman,⁵ H.I. Park,⁴

G. Savard,³ N.D. Scielzo,¹ A.J. Shaka,² M.A. Stoyer,¹ and A.P. Tonchev¹

¹Lawrence Livermore National Laboratory, Livermore, California
²University of California at Irvine, Irvine, California
³Argonne National Laboratory, Argonne, Illinois
⁴Cyclotron Institute, Texas A&M University, College Station, Texas
⁵University of California at Berkeley, Berkeley, California

This report describes the progress of our experimental program to precisely measure the β -decay branching ratios of ⁹⁵Zr, ¹⁴⁴Ce, and ¹⁴⁷Nd, which began in 2016. More information about the motivation and experimental approach can be found in our previous report [1]. The measurement described in [1] suffered from a β -detector efficiency that was ~15% lower than anticipated due to a high electronic threshold that was discovered after data collection. Therefore, we have repeated these measurements.

As in the previous experiment, high-purity samples of 95 Zr (150 Bq) and 147 Nd (1600 Bq) were collected on thin (40 µg/cm²) carbon-foil backings using low-energy mass-separated beams of A=95 and 147 fission products from CARIBU at Argonne National Laboratory. The implanted samples were then shipped to Texas A&M where the decay-counting measurement took place. Because of its long half-life (284.91 d), we were able to reuse a previously-made ¹⁴⁴Ce (160 Bq) sample. The γ -ray and β - γ measurements were performed in the same geometry as our previous experiment: The sample was inserted in the middle of a 4 π gas proportional counter for β -particle detection and was positioned 15.1 cm from the HPGe detector. We also improved the signal-to-background ratio in the γ -ray spectrum by a factor of 3 by adding a lead-plastic-copper layered shield around the HPGe detector. We performed multiple-day-long measurements with each sample, interleaved with background measurements. The β - γ coincidence spectra are shown on Fig.1.

A thorough analysis of the data is underway. We were able to collect sufficient statistics for a sub-percent uncertainty on all the measured sources: We have collected about 170k, 120k, and 40k β - γ coincidence counts for the most-intense γ -ray peaks in the decays of ¹⁴⁷Nd, ⁹⁵Zr and ¹⁴⁴Ce, respectively. We are investigating the systematic uncertainties associated with the measurement. The main challenges are establishing the β -detector and γ -ray detection efficiencies and determining the purity of the samples. The preliminary analysis shows the β detector performed as expected with an efficiency of 96-98% for β transitions with energies in the range, 100-800 keV. The experimental and simulated (GEANT4) efficiencies are in good agreement, as can be seen in Fig. 2. To determine the fraction of observed β -singles counts from the isotope of interest, the contributions from the decay of the daughter isotope and any contaminants must be taken into account. For the ⁹⁵Zr sample, the grow-in of the daughter ⁹⁵Nb accounted for about 20% of the activity; for the ¹⁴⁴Ce sample, the daughter ¹⁴⁴Pr has only a 17.28 minute half-life, so its contribution was 50%; For ¹⁴⁷Nd, the daughter ¹⁴⁷Pm has a 2.6 year half-life, and so it

FIG. 1. The γ -ray energy spectra for β - γ coincidences for the 95 Zr (top), 144 Ce (middle), and 147 Nd (bottom) samples.

contributed only about 0.5%. The only additional contaminants observed in any of the samples were in the case of ^{147}Nd , where ${\sim}0.3\%$ of the activity was from ^{131}I and ^{103}Ru .

FIG. 2. The efficiency of the 4π gas proportional counter used for β detection compared with GEANT4 simulations. Figure shows the difference between the simulated efficiency and the experimental efficiency for several transitions in 95 Zr, 144 Ce, and 147 Nd.

With this data set we should be able to determine the branching ratios of ⁹⁵Zr, ¹⁴⁴Ce, and ¹⁴⁷Nd to 1-2% precision. We intend to complete the analysis by the end of the summer.

 K. Kolos et. al., Progress in Research, Cyclotron Institute, Texas A&M University (2016-2017), p. I-31.